

Real-Time Wireless Control Networks for Cyber-Physical Systems

Chenyang Lu Cyber-Physical Systems Laboratory Department of Computer Science and Engineering

Washington University in St. Louis

Wireless Control Networks

Wireless for Process Automation

> World-wide adoption of wireless in process industries

Outline

- > WirelessHART: real-time wireless in industry
- Real-time scheduling theory for wireless
- Wireless-control co-design
- Case study: wireless structural control

WirelessHART

Industrial wireless standard for monitoring and control

Characteristics

Reliable in hash industrial environments

- Time Division Multiple Access
- Multi-channel
- No concurrent transmission in a same channel
- Route diversity

Centralized network manager

- Collects topology information from the network
- Generates routes and global transmission schedule
- Reconfigures when devices/links break

Real-Time Scheduling for Wireless

Goals

- \succ Real-time transmission scheduling \rightarrow meet end-to-end deadlines
- ➢ Fast schedulability analysis → online admission control and adaptation

Approach

- Leverage real-time scheduling theory for processors
- Incorporate wireless characteristics

Results

- Dynamic priority scheduling [RTSS 2010]
- Fixed priority scheduling
 - End-to-end delay analysis [RTAS 2011]
 - Priority assignment [ECRTS 2011]

Real-Time Scheduling for Wireless

Goals

- > Real-time transmission scheduling \rightarrow meet end-to-end deadlines
- ➢ Fast schedulability analysis → online admission control and adaptation

Approach

- Leverage real-time scheduling theory for processors
- Incorporate wireless characteristics

Results

- Dynamic priority scheduling [RTSS 2010]
- Fixed priority scheduling
 - □ End-to-end delay analysis [RTAS 2011]
 - Priority assignment [ECRTS 2011]

\succ Flow: sensor \rightarrow controller \rightarrow actuator over multi-hops

► Each flow F_i is characterized by
 A source (sensor), a destination (actuator)
 A route through the controller
 A period P_i
 A deadline D_i (≤ P_i)

□ Total number of transmissions C_i along the route

Scheduling Problem

Fixed priority scheduling

- Every flow has a fixed priority
- Order transmissions based on the priorities of their flows.

end-to-end delay of F_i Flows are schedulable if $R_i \le D_i$ for every flow F_i deadline of F_i

Goal: efficient delay analysis

Gives an upper bound of the end-to-end delay for each flow

Used for online admission control and adaptation

End-to-End Delay Analysis

> A lower priority flow is delayed due to

- channel contention: all channels in a slot are assigned to higher priority flows
- transmission conflict: two transmissions involve a same node
- Analyze each type of delay separately
- Combine both delays \rightarrow end-to-end delay bound

Insights

- Flows vs. Tasks
 - Similar: channel contention
 - Different: transmission conflict
- \succ Channel contention \rightarrow multiprocessor scheduling
 - □ A channel \rightarrow a processor
 - □ Flow F_i → a task with period P_i , deadline D_i , execution time C_i
 - Leverage existing response time analysis for multiprocessors

> Need to account for delays due to transmission conflicts

Delay due to Conflict

- ➢ Low-priority flow F₁ and high-priority flow F_h, conflict → delay F₁
- > Q(I,h): #transmissions of F_h sharing nodes with F_l
 - In the worst case, F_h can delay F_l by Q(*l*,*h*) slots
 - □ $Q(l,h) = 5 \rightarrow F_h$ can delay F_l by 5 slots

Fraction of test cases deemed schedulable based on analysis vs. simulations

Goal: optimize control performance over wireless

Challenge

- Wireless resource is scarce and dynamic
- Cannot afford separating wireless and control designs

Cyber-Physical Systems Approach

Holistic co-design of wireless and control

Examples

- Rate selection for wireless control [RTAS 2012, TECS]
- Wireless structural control [ICCPS 2013]

- Optimize the sampling rates of control loops sharing a WirelessHART network.
- ➤ Rate selection must balance control and network delay
 □ Low sampling rate → poor control performance
 □ High sampling rate → long delay → poor control performance

Digital implementation of control loop i

- **D** Periodic sampling at rate f_i
- Performance deviates from continuous counterpart

- Formulated as a constrained non-linear optimization
- > Determine sampling rates $f = \{ f_1, f_2, \dots, f_n \}$ to

$$\begin{array}{ll} \text{Minimize control cost} & \sum_{i=1}^{n} \alpha_i \ \mathbf{e}^{-\beta_i f_i} \\\\ \text{subject to} & \mathbf{R}_i \leq 1 / f_i \\ f_i^{\min} \leq f_i \leq f_i^{\max} \end{array}$$

Polynomial Time Delay Bounds

In terms of decision variables (rates), the delay bounds are

- Non-linear
- Non-convex
- Non-differentiable

The optimization problem is thus non-convex, non-differentiable, not in closed form

Relax delay bound to simplify optimization!

- > Derive a convex and smooth, but less precise delay bounds.
- Rate selection becomes a convex optimization problem.

Evaluation

- Greedy heuristic is fast but incurs high control cost.
- Subgradient method is neither efficient nor effective.
- Simulated annealing incurs the lowest control cost, but takes a long time.
- Convex approximation balances control cost and execution time.

Case Study: Wireless Structural Control

- > Structural control systems protect civil infrastructure.
- > Wired control systems are costly and fragile.
- Wireless structural control (WSC) offers flexibility and low cost.

Heritage tower crumbles down in earthquake of Finale Emilia, Italy, 2012.

Hanshin Expressway Bridge after Kobe earthquake, Japan, 1995.

- Wireless Cyber-Physical Simulator (WCPS)
 - Capture dynamics of both physical plants and wireless networks
 - □ Enable holistic, high-fidelity simulation of wireless control systems
 - Integrate TOSSIM and Simulink/MATLAB
 - Open source: <u>http://wcps.cse.wustl.edu</u>
- Realistic case studies on wireless structural control
 - Wireless traces from real-world environments
 - Structural models of a building and a large bridge
 - Excited by real earthquake signal traces
- Cyber-physical co-design
 - End-to-end scheduling + control design
 - Improve control performance under wireless delay and loss

Bill Emerson Memorial Bridge: Physical Model

- Main span: 1,150 ft.
- Carries up to 14,000 cars a day over the Mississippi River.
- In the New Madrid Seismic Zone
- Replaced joints of the bridge by actuators
 - 24 hydraulic actuators
- Vibration mode:
 - □ 0.1618 Hz for 1st mode
 - □ 0.2666 Hz for 2nd mode
 - 0.3723 Hz for 3rd mode

Jindo Bridge: Wireless Traces

Largest wireless bride deployment [Jang 2010]
 113 Imote2 units; Peak acceleration sensitivity of 5mg – 30mg
 RSSI/noise traces from 58-node deck-network for this study

Reduction in Max Control Power

Conclusion

- > Real-time wireless is a reality today
 - Industrial standards: WirelessHART, ISA100
 Field deployments world wide
- Real-time scheduling theory for wireless
 Leverage real-time processor scheduling
 - Incorporate unique wireless properties
- > Cyber-physical co-design of wireless control systems
 - Rate selection for wireless control systems
 - Scheduling-control co-design for wireless structural control
- > WCPS: Wireless Cyber-Physical Simulator
 - Enable holistic simulations of wireless control systems
 Realistic case studies of wireless structural control

Future Directions

Scaling up wireless control networks

- □ From 100 nodes \rightarrow 10,000 nodes
- Dealing with dynamics locally
- Hierarchical or decentralized architecture

> A theory and practice for wireless control

From case studies to unified theory and methodology

- Bridge the gap between theory and systems
- \Box Theory \rightarrow robust implementation \rightarrow deployment

For More Information

Real-Time Scheduling for Wireless

- A. Saifullah, Y. Xu, C. Lu and Y. Chen, End-to-End Delay Analysis for Fixed Priority Scheduling in WirelessHART Networks, IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2011.
- A. Saifullah, Y. Xu, C. Lu and Y. Chen, Priority Assignment for Real-time Flows in WirelessHART Networks, Euromicro Conference on Real-Time Systems (ECRTS), 2011.
- A. Saifullah, Y. Xu, C. Lu, and Y. Chen, Real-time Scheduling for WirelessHART Networks, IEEE Real-Time Systems Symposium (RTSS), 2010.
- http://cps.cse.wustl.edu/index.php/Real-Time_Wireless_Control_Networks

Wireless-Control Co-Design

- A. Saifullah, C. Wu, P. Tiwari, Y. Xu, Y. Fu, C. Lu and Y. Chen, Near Optimal Rate Selection for Wireless Control Systems, ACM Transactions on Embedded Computing Systems, accepted.
- A. Saifullah, C. Wu, P. Tiwari, Y. Xu, Y. Fu, C. Lu and Y. Chen, Near Optimal Rate Selection for Wireless Control Systems, IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2012.

Case Study on Wireless Structural Control

- B. Li, Z. Sun, K. Mechitov, G. Hackmann, C. Lu, S. Dyke, G. Agha and B. Spencer, Realistic Case Studies of Wireless Structural Control, ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), 2013.
- CPS Project on Wireless Structural Monitoring and Control: <u>http://bridge.cse.wustl.edu</u>
- Wireless Cyber-Physical Simulator: <u>http://wcps.cse.wustl.edu</u>