

Are We Ready to Go Large-Scale?

Challenges in the Deployment and Maintenance of Heterogeneous Networks of Cooperating Objects

Prof. Dr. Pedro José Marrón
Rome, PECCS / SENSORNETS 2012 Conference
February 24th, 2012

European Center for Ubiquitous Computing and Smart Cities

Are We Ready to Go Large-Scale?

NO!

Thank you for your attention!

European Center for Ubiquitous Computing and Smart Cities

u-Cities in Korea

- New Songdo City to be finished in 2014
- \$25 billion approved budget
- Based on smart-cards, RFID technologies, etc.

European Center for Ubiquitous Computing and Smart Cities

Example Sensor Platforms

- TelosB (Crossbow)
 - Texas Instruments MSP430, 8 MHz
 - Chipcon CC2420, 2.4GHz
 - 10kB RAM
 - 48kB Program Flash
 - 1MB external Flash

- IMote2 (Crossbow)
 - Marvell PXA271 ARM
 - TI CC2420 802.15.4 / ZigBee compliant radio
 - 32MB SDRAM
 - 32MB Flash

European Center for Ubiquitous Computing and Smart Cities

19

Energy Scavenging

- Light \rightarrow solar cells: between 100 μ W/cm² (office desk) and 100 mW/cm² (direct sun)
- Temperature gradients: 60 μW/cm² from 5K difference
- Acoustic noise: 0.003μW/cm² at 75 dB
- Vibrations: between 4 and 800 μW/cm³
- Pressure variation (piezo-electric): 330 μW/cm² from the heel of a shoe
- Air/liquid flow:
 1mW/cm²

European Center for Ubiquitous Computing and Smart Cities

Power Consumption

- Consumption depends on power mode of devices
 - power safe modes of CPU
 - transmit power levels of radio
 - different sensors
- Mica2 with CPU on and radio receiving draws 16mA

Device	Current	Device	Current
CPU		Radio (900 MHz)	
Active	7.6mA	Core	$60 \mu A$
Idle	3.3mA	Bias	1.38mA
ADC Noise	1.0mA	Rx	9.6 mA
Power down	$116 \mu A$	Tx (-18 dBm)	8.8mA
Power Save	$124 \mu A$	Tx (-13 dBm)	9.8mA
Standby	$237 \mu A$	Tx (-10 dBm)	10.4mA
Ext Standby	$243 \mu A$	Tx (-6 dBm)	11.3mA
		Tx (-2 dBm)	15.6mA
LED (each)	2.2mA	Tx (0 dBm)	17.0mA
		Tx (+3 dBm)	20.2mA
Sensor Board	0.7mA	Tx (+4 dBm)	22.5mA
		Tx (+5 dBm)	26.9mA

- With standard batteries (2500mAh) it could run for 6.5 days
 - use of sleep modes, turn off radio, sensors, ... if possible
 - process (i.e. compress, aggregate) data before transmitting

European Center for Ubiquitous Computing and Smart Cities

21

Some Fundamental Challenges Hardware-related Energy harvesting Planning and Simulation Installation and System Integration Network Operation Real-world conditions Amount of generated data Monitoring of the network User interfaces Repairing and network healing

Some Fundamental Challenges

- Hardware-related
 - Energy harvesting
- Planning and Simulation
- Installation and System Integration
- Network Operation
 - Real-world conditions
 - Amount of generated data
 - Monitoring of the network
 - User interfaces
- Repairing and network healing

European Center for Ubiquitous Computing and Smart Cities

Network Repairing / Healing

- Detection of borders and holes is crucial
- Non-intrusive monitoring needed

European Center for Ubiquitous Computing and Smart Cities

Are We Ready to Go Large-Scale?

Not yet but we are getting there!

Thank you for your attention!

European Center for Ubiquitous Computing and Smart Cities

