

Sensor Networks based on Optical Waveguide Sensors

Dr. Kort Bremer

Hannover Centre of Optical Technologies (HOT) Leibniz Universität Hannover Hannover, Germany

Kort.Bremer@hot.uni-hannover.de +49 511 762 17905

SENSORNETS 2018, Madeira, 22-24.01.2018

24. January 2018

Introduction

Components of an optical waveguide sensor:

- Optical waveguide
- Light source & light detector
- Optical sensor element

Introduction

Applications:

- Structural Health Monitoring (SHM)
 - Civil engineering structures
 - Geothermal wells
 - Power transmission lines
 - Railways
- Point-of-Care Testing (POCT)
 - Biomarker detection
- Analytic
 - Environmental
 - Food chemistry

Leibniz

Bremer, HOT, LUH

Content

- Optical waveguides
- Sensor concepts
- Multiplexing approaches
- Summary

Content

- Optical waveguides
- Sensor concepts
- Multiplexing approaches
- Summary

Principle of Operation

- Total internal reflection (TIR)
- Photonic Crystal
- Plasmonics
- Metamaterial

Background

- Total internal reflection (TIR)
- Requirement: n_{clad} < n_{core}
- Numerical aperture specifies angle of incident

$$NA = \sqrt{n_{COTe}^2 - n_{clad}^2} = \sin(\theta_i).$$

Discrete angles of propagation
 = modes

$$\beta_m = n_1 k_0 \cos \theta_m$$

Number of waveguide modes

$$M = \left[2d\frac{\sin\theta_c}{\lambda}\right] = \left[2\frac{d}{\lambda}NA\right]$$

M. Rahlves, HOT, LUH

Background

- Attenuation
 - Impurities
 - Absorption
 - Rayleigh scattering
- Dispersion
 - Material dispersion
 - Chromatic dispersion
 - Polarization dispersion
 - Mode dispersion

Different waveguide cross-sections/geometries (exemplary)

Photonic components (exemplary)

Fabrication methods

- Optical fibers
 - Draw tower
 (Glass and polymer fibers)
 - Extruder
 (Polymer fibers)

- Micro/Nanoreplication
- Photolithography
- Laser inscription
- Printing

M. Rezem, HOT, LUH

Content

- Optical waveguides
- Sensor concepts
- Multiplexing approaches
- Summary

Sensors

Sensor concepts

- Intensity
- Polarisation
- Phase (Interferometric)
- Spectral
- Resonant
- Scattering

Application

- Physical quantities
 - Strain
 - Pressure
 - Shape
 - Temperature
- Chemical quantities
 - Absorption
 - Fluorescents
 - Refractive index (RI)

Sensor concepts – Intensity based

Intensity modulated sensors

- External perturbations modulate light intensity inside optical waveguide
- Displacement sensing:
 - Two optical waveguides in close proximity
 - ⇒ Amount of light captured by the second fiber depends on the NA and distance d
- Pressure sensing:
 - Bending optical fiber by diaphragm
 - Optical fiber between two corrugated plates
 - ⇒ Bending/Microbending introduces light losses

Sensor concepts – Intensity based

Intensity modulated sensors

- Light intensity of optical waveguide interacts with surrounding (absorption spectroscopy)
- Cavity based sensor:
 - Two optical waveguides separated by cavity
 - ⇒ Light inside the cavity is absorbed by the surrounding medium
- Evanescent field:
 - Evanescent field of light inside the optical waveguide interacts with surrounding
 - ⇒ Evanescent light is absorbed by the surrounding medium

Sensor concepts – Polarisation based

Polarization modulated sensors

- External perturbations induce birefringence
 - Change of the refractive index due to elastooptic effect
 - \Rightarrow Change of the light polarization state

- Magnetic field sensor (Faraday-effect)
 - Faraday-rotation of light is proportional to line integral of the magnetic field
 - ⇒ Plane of polarization changes with applied current

Mach-Zehnder interferometer (MZI)

- Splitting an optical waveguide into an object and reference arm
- Creating light interference by recombining both waveguide arms
 - \Rightarrow Phase difference

$$\Delta \varphi = k \cdot \Delta n \cdot l_0$$

 \Rightarrow Light intensity modulation

$$I_{out} = I_R^2 + I_O^2 + 2\sqrt{I_R I_O} \cdot \cos(\Delta \varphi)$$

Fiber optic MZI sensor

- Application: Strain/Force sensing
- Optical waveguide:
 Single-mode fibers

Bundesministerium für Bildung

- Fabrication: Fusion splicing of optical fibers and 3dBcouplers
- Sensitivity:
 0.0033 mm/N (± 1.4 %)

Asymmetric optical waveguide MZI

- Application:
 Displacement sensing
 N. Zhao, Opt. Engineering 56(2), 027109 (2017)
- Optical waveguide:
 Single-mode strip waveguide
- Fabrication:
 Photolithography & Spin coating
 - Cladding: NOA61 (n = 1.54)
 - Core: SU-8 (n = 1.57)
- Sensitivity: 0.105 rad/μm

Bimodal optical waveguide interferometer

- Applications:
 Point-of-care diagnostics
 Gavela *et al.*, Sensors 16, 285 (2016)
- Optical waveguide:
 Single-mode rib waveguide
- Fabrication:
 Photolithography
 - Layer 1: Silicon oxide (cladding)
 - Layer 2: Silicon nitride (core)
 - Layer 3: Silicon oxide (cladding)
- Sensitivity: 3.3^{-10⁻⁷} RIU

Fabry-Perot Interferometer (FPI)

- Two mirrors of reflectance R₁ and R₂ are separated by a cavity of length L
- Light interference due to optical path difference
 - \Rightarrow Phase difference

$$\Delta \varphi = 2 \cdot k \cdot n \cdot L$$

 \Rightarrow Light intensity modulation

$$\frac{I_R}{I_0} = \frac{R_1 + R_2 + 2\sqrt{R_1R_2}\cos(\Delta\varphi)}{1 + R_1R_2 + 2\sqrt{R_1R_2}\cos(\Delta\varphi)}$$
$$\frac{I_T}{I_0} = \frac{T_1T_2}{1 + R_1R_2 + 2\sqrt{R_1R_2}\cos(\Delta\varphi)}$$

Example: Fiber optic FPI sensor

- Application: Pressure sensing Hill *et al.*, Sens. Actuators, A 138, 52 (2007)
- Optical Waveguide:
 Single-mode optical fiber
- Fabrication:
 Photolithography & Spin Coating
- Sensitivity:
 1-2 mmHg (= approx. 1,3 mbar)
 (Linear range: 0 125 mmHg)

Optical waveguides with gratings

- Periodic refractive index modulation of optical waveguide core
- i. Counter-propagating coupling (Bragg wavelength) $\lambda_B = 2 \; n_{eff} \Lambda$
- ii. Co-propagating coupling $\lambda_R = (n_{eff,Core} n_{eff,Cladding})\Lambda$
- A and n_{eff} are sensitive to external influences (strain, temperature and RI)

 \Rightarrow Shifting coupling wavelength

Counter-propagating

Fiber Bragg Grating (FBG)

- Application:
 Strain and temperature sensing
- Optical waveguide:
 Single mode optical fibers
- Fabrication techniques:
 - Point-by-point (fs-laser)
 - Phase mask (e.g. KrF excimer laser)
 - Mach-Zehnder Interferometer
- Sensitivity: (example Micron Optics os4100 and os3100)
 - 28.9 pm/°C (os4100)
 - 1.4 pm/με (os3100)

M. Rahlves, HOT, LUH

Fiber Bragg Grating (FBG)

- Application:
 Relative humidity (RH) sensing
- Optical waveguide:
 Single mode optical fiber
- Fabrication:
 - FBG:Phase mask and KrF excimer laser
 - Polyimide (PI) coating:
 Dip coating
- Sensitivity: 0.01 nm/%RH

Long period grating (LPG)

- Application: Refractive index (RI) sensing
- Optical waveguide:
 Single mode optical fiber
- Fabrication:
 - Amplitude mask (e.g. KrF excimer laser)
 - Point-by-point
 (fs-Laser, CO₂-Laser, splicer, etc.)
 - Microbender

Sensor concepts – Resonance based

Ring Resonator

- Evanescent light coupling between waveguide and ring structure
- Circumference of ring must be an integer multiple of the light wavelength (constructive interference)
- Sensing of refractive index of the surrounding
- Characteristic parameters
 - Free spectral range

$$\Delta \nu = \frac{c}{2\pi R}$$

Quality factor

$$Q = \frac{\Delta \nu}{\delta \nu}$$

M. Rahlves, HOT, LUH

Sensor concepts – Resonance based

Surface Plasmon Resonance (SPR)

- Resonant oscillation of electrons at metal/dielectric interface stimulated by incident light
- Advantage:
 - Surface wave
 - ⇒ Strong interaction with surrounding medium
- Investigation of biomolecule interaction
 - Label free
 - Real time
 - Quantitative

Sensor concepts – Resonance based

Fibre optic SPR sensor for Smartphones

- Application: Refractive index sensing
- Optical waveguide: Plastic cladded silica (PCS) multi-mode fiber
- Fabrication:
 - Silver coating of fiber core
 - 45° polishing fiber end-faces
- Sensitivity:
 5.96·10⁻⁴ RIU/pixel

Sensor concepts – Scattering based

Silica optical glass fibers

- Rayleigh scattering
 - Scattering due to density and composition fluctuations in the glass fiber
 - Elastic scattering
- Raman scattering
 - Molecular vibration of glass causes light to be scattered
 - Inelastic scattering
- Brillouin scattering
 - Light scattering from the collective acoustic oscillations of the glass
 - Inelastic scattering

Content

- Optical waveguides
- Sensor concepts
- Multiplexing approaches
- Summary

Multiplexing optical waveguide sensors

Multiplexing – Single-Point

Sensor multiplexing

- One light source and light detector per optical waveguide sensor
- Optical waveguide:
 Only acting as sensor element
- Multiplexing approaches
 - Optical:
 Space Division Multiplexing (SDM)
 Time Division Multiplexing (TDM)
 Wavelength Division Multiplexing (WDM)
 - Electrical:
 Wireless sensor networks, etc.

Multiplexing – Single-Point

Example ring resonator based sensor network

- Space and time division multiplexing Iqbal *et al.*, IEEE J. Sel. Topics Quantum Electron. 16(3), 654 (2010)
- Several ring resonators are spatially separated (SDM)
- Interrogating ring resonators successively using on interrogator (TDM)
- Application:
 - Point-of-Care (POC)
 Diagnostic

Multiplexing – Single-Point

Radio-over-Fiber (RoF) based multiplexing

- RoF: Electrical carrier signal is transmitted over optical fiber Neumann *et al.*, Proc. of SPIE Vol. 927, 927402-2 (2014)
- Optical fiber transmission link contains optical fiber sensor element
- Quantities measured are transmitted and evaluated off-site
- Application:
 - Structural Health Monitoring:
 Strain, temperature, humidity, etc.
 - Process control:
 Refractive index, etc.

Sensor multiplexing

- Several optical waveguide sensors per light source and light detector
- Optical waveguide:
 Optical transmission link and hosting discrete optical sensor element
- Multiplexing approaches:
 - Optical
 TDM, WDM, SDM
 - Electrical
 Wireless sensor networks

Example FBG based sensor network

- Wavelength Division Multiplexing (WDM) and Time Division Multiplexing (TDM)
- Multiplexing of FBG by applying different Bragg wavelength (WDM)
- Pulsed laser and fiber loop (time delay) between FBG sensors with equal Bragg wavelength (TDM)
- Application:
 - Structural Health Monitoring (SHM) of sewerage tunnels
 (Humidity and tilt)

Leibniz Universität Hannover

Bremer, HOT, LUH

Example FBG based sensor network

- Wavelength Division Multiplexing (WDM) and Spatial Division Multiplexing (SDM)
- Applying multi-core optical fiber for spatial separation (SDM)
- Multiplexing of FBG by applying different Bragg wavelength (WDM)
- Application:
 - Shape sensing

Example: Fiber optic FPI sensor

- Application: Pressure and refractive index sensing Pevec *et al.*, Optics Letters 39(21), 2014
- Optical Waveguide:
 Single-mode optical fiber
- Fabrication:
 Splicing, polishing and etching
- Sensitivity:
 0.2 mbar and 2.10⁻⁵ RIU

Fiber optic FPI and FBG sensor

- Application:
 Pressure and temperature sensing
- Optical waveguide:
 Single-mode fiber with FBG
- Fabrication:
 Splicing, polishing and etching
- Sensitivity:
 4.4 nm/kPa
 (temperature ≤ 400 ° C)

Rayleigh scattering

- Elastic scattering of light by particles much smaller than the wavelength
- In silica fibers microscopic variations of density and refractive index cause
 Rayleigh scattering
- Energy losses ~ λ^{-4}
- Distributed sensing approaches:
 - Optical Time Domain Reflectometry (OTDR)
 - Optical Frequency Domain Reflectometry (OFDR)

Optical Time Domain Reflectometry (OTDR)

- Principle of operation
 - Coupling light pulse into optical fiber
 - Detecting reflected light due to Rayleigh scattering or e.g. interconnection and splice
 - Strength of returned light is measured as a function of time
 - ⇒ Calculating the spatial attenuation profile
- Application examples:
 - Distributed acoustic sensing
 - Distributed crack detection of building structures
 - Distributed leakage detection

STFI

Optical Frequency Domain Reflectometry (OFDR)

- Principle of operation
 Soller *et al.*, Optics Epxress 13, 666 (2005)
 - Coupling light of a tunable laser into optical fiber
 - Detector contains interferometer
 - Detecting interference fringes
 - Calculating spatial "density" profile of fiber under test
- Applications examples:
 - Distributed strain and temperature sensing
 - Luna ODiSI-B:
 Sensor length: 10 m; Spatial resolution: 2.6 mm

Raman Scattering

- Inelastic scattering of light
- Molecular vibration causes incident light to be scattered
- Producing stokes and anti-stroke emissions about the exciting wavelength
- Determining temperature by comparing the amplitudes of the Stokes and Anti-Stroke emissions
- \Rightarrow Distributed temperature sensing

Raman Scattering

- Distributed temperature sensing
- Typical specifications:
 - Distance 30 km
 - Spatial resolution 5 cm to 4 m
 - Temperature sensitivity \pm 0.1 K to 2 K
- Application examples:
 - Structural Health Monitoring (SHM)
 - Power transmission lines
 - Fire alarm system
 - Geothermal energy
 - Enhanced oil recovery

Brillouin Scattering

- Inelastic scattering of light
- Light scattering from the collective acoustic oscillations (acoustic phonons) of glass
- Maximum reflection when scattered light is in phase
- Temperature and strain modify the mean density and thus the velocity of sound
- ⇒ Distributed strain and temperature sensing

Brillouin Scattering

- Distributed strain and temperature sensing
- Specifications (fibrisTerre fTB 2505):
 - Distance 25 km
 - Spatial resolution 0.5 m
 - Strain and temperature resolution
 2με and 0.1 K
- Application examples:
 - Structural Health Monitoring (SHM)
 - Railways
 - Dikes

- ...

Content

- Optical waveguides
- Sensor concepts
- Multiplexing approaches
- Summary

Summary

Optical waveguide sensors

- + Immune to EMI
- + Robust
- + Small in size
- + Remote operation

Applications

- Structural Health Monitoring (SHM)
- Analytic
- Point-of-Care

Sensor concepts

- Classification
 - Amplitude
 - Polarization
 - Phase
 - Spectral
 - Resonant
 - Scattering
- Multiplexing
 - Single-Point
 - Quasi-distributed
 - Distributed

Many thanks

Dr. Kort Bremer Hannover Centre of Optical Technologies (HOT) Leibniz Universität Hannover Hannover, Germany

Kort.Bremer@hot.uni-hannover.de +49 511 762 17905

SENSORNETS 2018, Madeira, 22-24.01.2018

24. January 2018