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Motivation 
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Numerous technologies 
• Radio-based positioning systems 

• WiFi localization (with / without fingerprinting) 
• Bluetooth Low Energy 
• RFID systems 
• Ground-based transmitters to extend GPS service indoors 

• Inertial tracking 
• Ultrasound-based positioning 
• Visible light positioning 
• Magnetic positioning 
• Hybrid  

• sensing ambient magnetic and photo-acoustic signatures 
• WiFi+inertial positioning system 
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Key challenges 
1. Cluttered indoor spaces 

• Non-Line-Of-Sight (NLOS) signal propagation  
• Corrupts distance measurements 
• Leads to inaccurate position estimates 
 

2. Sparse infrastructure 
• Not all areas are covered by many anchors 
• The lower the anchor density the highest the position error 

 
 

3. Positioning accuracy depends on the environment 
• Spatial and temporal variability 
• Hard to measure empirically 
• Challenge in selecting / fusing data from different positioning systems 
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Challenge I 
 

CLUTTERED INDOOR SPACES 
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Problem caused by clutter 
Non Line Of Sight (NLOS) signals  
⇒ inaccurate distance estimates  
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Problem caused by clutter 
• Example of scenario with eight anchors: 

• Distances to five anchors have small LOS errors 
• Distances to three anchors have large NLOS errors 

 



Real position 

Non-Linear Least Squares 

Linear Least Squares 
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Problem caused by clutter 
• A few large errors, if undetected, can lead to very inaccurate 

position estimates 
 



Approach 1: robust localisation 
Key questions: 
 
Can we find which 
measurements are NLOS? 
 
Can we find how big are the 
positive NLOS errors? 
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Use the theory of  
compressed sensing 

Convex Programming Based Robust Localization in NLOS Prone Cluttered Environments 
Sarfraz Nawaz and Niki Trigoni ---  IPSN 2011.  



Approach 1: robust localisation 
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Unknown  
NLOS errors 

unknown node 
coordinates 

scaled NLOS errors 

• under-determined system 
• n is sparse (most elements are 0) 
 

Convex Programming Based Robust Localization in NLOS Prone Cluttered Environments 
Sarfraz Nawaz and Niki Trigoni ---  IPSN 2011.  

Multiplying both sides by C, such that CA=0 
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Approach 1: robust localisation 
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• Basis Pursuit Denoising 
 



Real position 
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Approach 1: robust localisation 
• Once we correct errors in distance estimates, we can 

accurately position the node 
 



Approach 1: robust localisation 
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• In action! 
 






Summary of first approach 
• Robust localization technique based on the theory of 

compressed sensing  
• It is agnostic to the sensing modality (radio, ultrasound, etc.) 
• It evaluates large NLOS errors, and corrects them prior to 

localization 
 

• However, it assumes more LOS than NLOS distance 
measurements 
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Need for second approach 
• The new approach should not require most distance 

measurements to be LOS 
 

• Should be applicable to the widely available WiFi-based 
positioning systems 
 

• These systems use RSS (Received Signal Strength) as an 
indicator of distance between two nodes 
• Advantage: infrastructure widely available 
• Disadvantage: notorious for inaccurate positioning 
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Approach 2 
• Key idea: Look at multiple signal measurements over a short 

time period 
 

• Can multiple measurements of radio RSS (Received Signal 
Strength) reveal if the measurements are taken in LOS or NLOS 
conditions? 
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• RSS does not map nicely to distance 
• The mapping is different in LOS and NLOS conditions 
 

Approach 2: RSS vs. Distance 



• RSS from an anchor at a given position varies over time 
• Variance alone is not enough to distinguish between LOS and NLOS 
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Approach 2: RSS is time-variant 

LOS 

NLOS 



• We have tried various features: 
1. Features of the samples (mean, standard deviation, Kurtosis, 

skewness) 
2. Shape of the estimated distribution (Rician vs. Rayleigh) 

 
 
 
 
 
 
 
 
 

3. Goodness-of-fit parameters between the samples and the 
estimated distribution (e.g. Kolmogorov-Smirnov statistic, Chi-
Squares, probability density difference) 
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Approach 2: NLOS identification 



• It is possible to distinguish between LOS and NLOS based on 
Received Signal Strength samples 
 

• The accuracy depends  on 
• on external interference conditions  
 (night 94% - day 86%) 
• the number of RSS samples  

• (> 50 samples) 
 

• Most indicative features (besides mean) 
• low interference: Rician K factor and variance are good indicators 
• high interference: skewness and curtosis (NOT variance) 20 

Approach 2: Key results 

Work in progress by Zhuoling Zhao and Niki Trigoni 



Summary of second approach 
• It is based on Radio Signal Strength (RSS) measurements 
• It uses features of RSS samples to predict LOS / NLOS 

conditions 
• It does not assume more LOS than NLOS distance 

measurements 
• It has good classification accuracy particularly in low-

interference conditions. 
 

• However, it requires many RSS samples! 
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Work in progress by Zhuoling Zhao and Niki Trigoni 



 

Challenge II 
 

SPARSE ANCHOR INFRASTRUCTURE 
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Sparse infrastructure problem 
• Not all indoor spaces are covered by many anchors 
• The lower the anchor density the highest the position error 
• Inertial dead reckoning is a possible solution,  

• BUT the measurement error increases with time 
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Exploit encounter constraints 
• Node encounters: 

• What if nodes periodically emit radio beacons.  
• When they come close, they hear each other’s beacons. 

 



Exploit encounter constraints 
• Encounter information relates them in space and time 
• We exploit this information to correct positional error 
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Existing approach 
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A 

Directed Diffusion Tracking by Constandache et al, 2010 

Rules for Directed Diffusion Tracking (DDT) 
1. Anchors always update mobile sensors 
2. Move to freshest location on encounter 

 

Anchor updates location 
of this sensor 

Black sensor has freshest 
positional update, so it 
updates the blue sensor 

Sensor then takes the 
position of the anchor 

Blue sensor then takes the 
position of the black sensor 

Linear drift 
correction 

Linear drift 
correction 



Proposed approach 
• Encounter-Based Tracking (EBT) 
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STEP 1 : Graph construction 

STEP 2 : Graph realization 

STEP 3 : Drift correction 

STEP 4 : Trajectory projection 

Encounter Based Sensor Tracking.  Andrew Symington and Niki Trigoni, Mobihoc 2012.
  



Encounter Based Tracking (EBT) 

28 

4 

5 

6 
7 

10 

11 

2 
1 

3 

8 

9 

STEP 1 : Graph construction Overview 



Encounter Based Tracking (EBT) 
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Distance matrix 

STEP 1 : Graph construction Overview 



Encounter Based Tracking (EBT) 
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Given the edges weights of a connected graph , find the 2D vertex positions 

Is there exactly one 2D realization of this graph that satisfies the distances?  

Assuming the above is true, can we find the graph embedding? 

STEP 2 : Graph realization Overview 



• Approaches from static localization literature 
• Multidimensional scaling (MDS) – Shang et al., 2003. 
• Spectral graph drawing (SGD) - Broxton, 2006. 
• Semidefinite programming (SDP) - Biswas and Ye, 2004. 
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Encounter Based Tracking (EBT) 
STEP 2 : Graph realization Overview of graph realization algorithms for static sensor localization 



Encounter Based Tracking (EBT) 
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STEP 3 : Drift correction Overview 



3. Spread error over 
time, so the trajectory 
ends aligned with 
second encounter 
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1 

2 

2. Calculate 
Error vector 

1. Shift trajectory to begin at 
first encounter 

Observation 
The shape of the curve is 
distorted when there is a 
large angle between the 
two red vectors  

Encounter Based Tracking (EBT) 
STEP 3 : Drift correction Linear drift correction (Constandache, 2010) 
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1 

2 

1. Shift trajectory to begin at 
first encounter 

3. Rotate trajectory so 
that it is aligned with 
the desired direction. 

2. Calculate the direction 
vectors for the trajectory 
and the desired path. 

4. Scale the trajectory, so 
that its end point is aligned 
with the second encounter. 

Encounter Based Tracking (EBT) 
STEP 3 : Drift correction Radial drift correction 



Encounter Based Tracking (EBT) 
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Procrustes transform (Cox, 2008) 
- Scale 
- Rotation 
- Translation 

 
Requires at least 3 non-collinear 
anchor points 

Overview STEP 4 : Trajectory projection 



Experimental setup 
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Mobility data 

• IPIN2010 pedestrian data set from Angermann et al, 2010. 
• 260s random walk 
• 7m x 7m room 
• Available data streams 

• Inertial trajectory 
• Ground truth trajectory 

• How we used the data 
• 30s random subsample 
• 5 sensors 
• Time synchronisation 
• Synthetic encounters 



Results: Transmission range 
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Effect of radio transmission range on tracking error 

Radio transmission range 
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Summary of EBT 

• Combines anchor-based localization with inertial tracking 
• Exploits wireless encounters between mobile nodes 
• Significantly improves localization accuracy (up to 46%) 

compared to competing approaches 
 

• However, it is not applicable to all scenarios 
• Is cooperative in nature 
• Raises trust / privacy concerns 
• Does not estimate location undertainty 
 Unlike robotics approaches                                                               
 (based on pose graphs) 
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Encounter Based Sensor Tracking.  Andrew Symington and Niki Trigoni, Mobihoc 2012.
  



 

Challenge III 
 

POSITIONING ACCURACY DEPENDS ON THE 
ENVIRONMENT 
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• The accuracy of an indoor positioning system (IPS)  depends on the 
environment 
• dense vs. sparse sensing infrastructures 
• cluttered environment vs. open space  

• Scenario with co-located IPSs: which one to choose? 
 

IPS1 
IPS2 

Real traj. 

Variations in position accuracy 



• Why not rely on reported accuracy? 

Ground truth 
WiFi triangulation 

Ground truth 
Inertial Dead Reckoning 

WiFi fingerprinting 

Variations in position accuracy 



Objectives 
• Assess the accuracy of co-located Indoor Positioning Systems 

(IPSs) in different parts of the area 
 

• Allow users to exploit this information to carefully choose 
which IPS to use where 

 

 
 
 

 

Variations in position accuracy 



Step 1:  
Cast the problem of accuracy assessment into that of learning the 
parameters of an augmented HMM 
 

Step 2:  
Use an Expectation Maximization algorithm to learn the HMM 
parameters  

 
 
 

 

Learning approach 



• Parameters of the augmented HMM  λ = (π, A, B) 

Emission probabilities:  
the expected probability  
that the IPS reports lk  
when the user is actually at lj  

zt-1 zt zt+1 

Observations:  
Not scalars,  
but probability distributions 

Augmented HMM 



• Prior belief on the locations of the user 
• Comes from calendars, flight boarding times… 

“Meeting in 430 on 3pm today”  

ρ3pm = {q3pm (430) = 0.9, others 0.1/(N-1)}    

0.9 

0.1 

zM
t-1 zM

t zM
t+1 

z1
t-1 z1

t z1
t+1 …

 

…
 

…
 

IPS1 

IPSM 

Augmented HMM 



Initialize the 
parameters λ 

N Y 

• Extension of Baum-Welch algorithm to take into 
account probabilistic observations and priors 
 

E-step: compute 
likelihood of data 

M-step: find new λ’ 
 that maximize the 
likelihood of data  

Converged 
or step limit 

reached 
λ := λ’ 

Expectation Maximization Alg. 



• Indoor setting 
• The 4th floor of the CS department (20d) 

• 4 WiFi-based IPSs with different basestations 
• 2 users with different devices 

IPS1 IPS2 IPS3 IPS4 

Experimental setup 



• Depends on infrastructure density 

Real 
acc. 

IPS1 
IPS2 
IPS3 

IPS1 IPS2 IPS3 

Accuracy varies across space 



IPS1 

IPS2 

IPS3 

Ground truth accuracy Reported accuracy Learnt accuracy 

EE = 0 EER = 16.98 EEL = 2.02 

Learnt vs. Reported accuracy 



  

• We replace IPS3 with IPS4, which overestimates its error 
• It has twice as high gyroscope and accelerometer variances 

IPS1 

IPS2 

IPS4 

Ground truth accuracy Reported accuracy Learnt accuracy 

Learnt vs. Reported accuracy 



• We introduce a new user with different device 
• Holding a tablet rather than a phone 
• IPS3  has not been tuned for such a device  
 

IPS1 

IPS2 

IPS3 

Ground truth accuracy Reported accuracy Learnt accuracy 

Learnt vs. Reported accuracy 



• Switch IPS according to different accuracy profiles 
• According to reported accuracy 
• According to learnt accuracy 

 

 Reported accuracy Learnt accuracy 

LER = 8.91 LEL = 2.07 

Localization error 



• Spatial variations in the accuracy of indoor positioning systems 
• Estimating their accuracy is possible by using a HMM learning 

approach 
• The learning-based approach outperforms the approach of relying 

on reported accuracy 
• It can further be improved by exploiting prior information about 

people’s locations, possibly drawn from their calendars 
 
• Future work 

• More types of priors 
• More complex positioning systems 

Summary of learning approach 

Work in progress by Hongkai Wen and Niki Trigoni 



Challenge I: Clutter => NLOS 
Robust localization  

RSS-based NLOS identification 
 

Challenge II: Infrastructure sparsity 
Encounter-based tracking 

 
Challenge II: Accuracy estimation 

HMM-based learning approach 
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Challenges and Approaches 
Revisited 



Thank you 
Acknowledgements 
 
• Dr Sarfraz Nawaz (Robust Localization) 
• Zhuoling Zhao (RSS-based NLOS identification) 
• Andrew Symington (Encounter based tracking) 
• Hongkai Wen (Learning accuracy of positioning systems) 
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• Approaches from static localization literature 
• Multidimensional scaling (MDS) – Shang et al., 2003. 

• MDS-MAP(P) – Shang and Ruml, 2004. 
• Spectral graph drawing (SGD) - Broxton, 2006. 

• Degree normalised SGD (DN-SGD) – Koren, 2003. 
• Semidefinite programming (SDP) - Biswas and Ye, 2004. 

• Exploiting matrix sparsity – Kim et al, 2008. 
• We implemented the four bolded approaches above 

• MDS-MAP too computationally expensive 
• SGD and DN-SGD performance similar 
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Encounter Based Tracking (EBT) 
STEP 2 : Graph realization Overview of graph realization algorithms for static sensor localization 
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Encounter Based Tracking (EBT) 
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Encounter Based Tracking (EBT) 
STEP 1 : Graph construction Edge selection 

1 

2 

3 

4 5 

1 

2 

3 

4 5 

Complete 

Conservative 

• Complete graph 
• More error → inaccurate realizations 

• Connect to preserve rigidity 
• Rigidity → single embedding 

✔ 

✗ 



Experimental setup 
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Radio model 

p1 
p2 
σ 



• Priors help the accuracy estimation 
• 20% of priors can reduce the estimation error by 50% 

 

mean squared 
error between 

estimated 
accuracy and 
ground truth 

accuracy 

Priors improve accuracy 



Experimental setup 
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Performance metric 

• Root mean square error (RMSE)  
• On the errors between the tracking output and ground truth 
• Over all trajectories 

• Independent of the trajectory length 
• All simulations run 100 times to obtain 95% confidence 

tracking output 

ground truth 



Results: Radio noise 
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Effect of radio noise on tracking error (less is favourable) 
 

Radio noise multiplier (scale factor for base RSSI variance) 
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Baum-Welch algorithm 

• Forward and backward variables 
• αt(j) = P(z1:t, xt = lj | λ ): joint probability of having all previous observations and 

landing at state lj at time t, given the model parameter λ. 
• βt(i) = P(zt+1:T |xt = li ,  λ): probability of having all future observations given the 

state li at time t and the model λ 
• Compute the new parameters λ’ = f (α, β ) 

 
αt 
βt 

αt+1 
βt+1 

αt-1 
βt-1 

zt-1 zt zt+1 



Extension of Baum-Welch 
• We use different definitions of forward and 

backward variables to take into account priors 
and probabilistic observations 
 

• We provide a different function that combines 
forward and backward variables to infer the 
new parameters 

 



Results: Number of anchors 
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Effect of number of anchors on tracking error (less is favourable) 
 

Number of anchors 
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